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Abstract
Wearable thermoelectric generator arrays have the potential to use waste body heat to power
on-body sensors and create, for example, self-powered health monitoring systems. In this work, we
demonstrate that a surface coating of a conducting polymer poly(3,4-ethylenedioxythiophene)
(PEDOT-Cl), created on one face of a wool felt using a chemical vapor deposition method was able
to manifest a Seebeck voltage when subjected to a temperature gradient. The wool felt devices can
produce voltage outputs of up to 120 mV when measured on a human body. Herein, we present a
strategy to create arrays of polymer-coated fabric thermopiles and to integrate such arrays into
familiar garments that could become a part of a consumer’s daily wardrobe. Using wool felt as the
substrate fabric onto which the conducting polymer coating is created allowed for a higher mass
loading of the polymer on the fabric surface and shorter thermoelectric legs, as compared to our
previous iteration. Six or eight of these PEDOT-Cl coated wool felt swatches were sewed onto a
backing/support fabric and interconnected with silver threads to create a coupled array, which was
then patched onto the collar of a commercial three-quarter zip jacket. The observed power output
from a six-leg array while worn by a healthy person at room temperature (∆T = 15 ◦C) was 2 µW,
which is the highest value currently reported for a polymer thermoelectric device measured at
room temperature.

1. Introduction

Thermoelectric materials are a type of material with
high electrical conductivities and low thermal con-
ductivities, allowing for them to generate a ther-
movoltage when exposed to a temperature gradi-
ent. These materials are utilized in temperature
sensors, such as thermocouples, and energy har-
vesters [1–5]. Thermoelectric generators (TEGs) have
the ability to convert waste heat into power and are
versatile enough to be able to be used in a vari-
ety of applications [6–10]. With the correct choice
of materials and fabrication techniques, TEGs can
be integrated into garments and provide a means
for a portable and accessible power source [11–21].
Yi et al recently reported a textile TEG composed
of poly(3,4-ethylenedioxythiophene) poly(styrene

sulfonate) (PEDOT:PSS) and poly[Na(NiETT)] as
the p and n types respectively. The 32-leg device
was able to produce a thermovoltage of 3 mV [4].
However, many examples of body-mounted TEGs
require rigid thermoelectric materials or are designed
to be adhered to the user’s skin. These systems are,
therefore, difficult to scale-up and to integrate into a
consumer’s daily wardrobe. Using an all-fabric device
can allow for more practical integration options and,
ultimately, a more accessible product [22–28].

In established previous work, it was shown
that the use of reactive vapor deposition (RVD)
to vapor print persistently p-doped poly(3,4-
ethylenedioxythiophene) (PEDOT-Cl) onto one face
of commercial fabrics, such as cotton, created highly-
efficient fabric thermopiles that maintained their
function in the presence of sweat [29]. We utilize a
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vapor coating technique, so the fabrics maintain their
look and feel, while also reducing the waste produced
in classic solution-based polymer coating methods.
Our previously reported work, as well as the work
herein are the only reports of polymer-coated textile
TEGs made from a vapor coating technique. Further,
by integrating this one-side-coated cotton thermopile
into a knitted armband, they created an all-fabric,
wearable TEG that produced Seebeck voltages of up
to 23 mV when worn on the body (∆T = 30 ◦C).
Here, we present a method for creating arrays of
polymer-coated fabric thermopiles, and the design
and optimization of thermoelectric garments con-
taining these all-fabric TEGs. We report on optim-
izing the power outputs of a TEG by fully utilizing a
wool-felt textile. We observe notable power outputs
of up to 2 µW from a person wearing a three-quarter
zip jacket containing a six-leg TEG array. This is the
highest reported power output of a polymer-coated
textile TEG [21].

2. Method

2.1. PEDOT-Cl coated fabrics
PEDOT-Cl was deposited onto wool felt in a custom-
built, quartz wall reaction chamber using RVD. Iron
(III) chloride was used as the oxidant and 3,4-
ethylenedioxythiophene was used as the monomer in
this reaction. The oxidant, substrate, and monomer
were heated to 95 ◦C, 110 ◦C, and 180 ◦C, respect-
ively. The depositions were giver 30 min to react at
∼100mTorr. Further details of the deposition process
have been previously detailed [29] and were followed
exactly as reported for this work.

2.2. TEGs
The TEGs were all assembled using commercially
available wool felt as a substrate. Silver-plated (76%)
nylon (24%) fabrics and silver-plated nylon thread
were both purchased from Less EMF Inc.

2.3. Electrical characterization
The power outputs from the TEG array were meas-
ured using the ‘Chronoamperometry’ function on
an Autolab Potentiostat. The current of the devices
were measured under fixed voltage values over a
period of 5 min at each voltage. The measurements
were done both statically at room temperature and
ambient humidity, as well as on a participant with
damp skin. Voltage outputs (Seebeck voltages) from
body-worn devices were measured using a Fluke
multimeter.

2.4. Infrared (IR) images
The IR images were taken using a FLIR camera.

3. Results and discussion

We previously reported an all-fabric TEG integrated
with a wearable knit band.We chose a lateral architec-
ture to create the TEGs, as this type of device architec-
ture has a lower likelihood of causing thermal equilib-
ration across each thermoelectric leg and because the
dimensions and constituents of the thermoelectric
legs can be independently tunedwithout adding addi-
tional bulk to a garment. Here, modifications were
made to this previously reported TEG to increase the
power outputs. The carbon fibers previously used as
the n-type thermoelectricmaterial were replacedwith
a more robust silver-plated nylon thread. The cotton
substrate was exchanged for a wool felt, which is a
non-wovenmaterial with very low thermal transport.
The densely textured, microstructured surface of the
wool felt increased the mass loading of the depos-
ited PEDOT-Cl on the fabric surface, as compared to
plain-woven tobacco cotton, leading to much higher
surface conductivity values. The increased polymer
loading on the fabric surface and higher conduct-
ivity, coupled with the decreased thermal transport
across the wool felt substrate enabled the thermoelec-
tric legs of the device to be shortened, thus increas-
ing the power outputs of an individual thermoelectric
leg without sacrificing the effective thermal gradient
experienced by the thermopile.

One thermoelectric leg was comprised of a rect-
angle of PEDOT-Cl coated wool felt contacted to
silver-plated nylon fabrics on either end and the
assembly stitched onto a thin backing support fab-
ric using silver threads (figure 1(a)). Two thermo-
electric legs comprised one TEG unit. Arrays of the
two-leg TEGs could be easily created by simple patch-
ing the backing fabric onto any desired textile or gar-
ment and connecting the TEGs with silver thread
embroidery. The Seebeck voltage output from the
two-leg TEG was first characterized using a hot/cold
block test station (figure 1(b)); however, the apparent
Seebeck voltages recorded using this test setup were
surprisingly low at 10 µW K−1 (figure S1 available
online at stacks.iop.org/FPE/6/044006/mmedia). In
contrast, when the TEG was placed against the wrist
of a participant (by inserting the TEGwithin a custom
knit armband), output voltages as high as 130 mV
were recorded at a ∆T = 13 ◦C, particularly when
the participant’s skin was wetted with lotion and/or
saline (figure 1(c)). It is important to mention that
the difference in output voltages for each ∆T value
recorded is due to properties of different devices, not
to the change in temperature. A similar observation
was noted in publishedwork [29], where the apparent
output voltages of all-fabric TEGs were up to an order
of magnitude higher on sweaty skin, as compared to
a static, dry test station. It is important to note that
PEDOT-Cl is amixed ionic-electronic conductor, and
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Figure 1. (a) The lateral architecture of one TEG comprised of two thermoelectric legs. (b) Test setup used to characterize the
static voltage outputs of the TEGs at controlled temperature differentials. (c) Output voltages of several body-mounted two-leg
TEGs. Each TEG was tested and dry skin as well as skin that was wetted with water, a 1 mM solution of sodium chloride, and
commercially available lotion. (d) Power outputs recorded from the TEGs at fixed voltage values.

it is known that the increased output voltages are a
reflection of the increasing ionic conductivity when
the polymer is exposed to moisture [6]. Figure 1(d)
shows the device power outputs at fixed voltage val-
ues. These voltage values represent the range of pos-
sible voltage outputs that can be produced by the TEGs
upon being worn on the body. One TEG produced
3.5 µW at 100 mV, which can be considered the aver-
age voltage output of one representative TEG shown
in figure 1(a).

Since our fabric-based TEGs had a lateral archi-
tecture, a thermal gradient could be imposed across
each thermoelectric leg by simply folding the pliable
fabric TEGover a spacer (figure 2(a)). Thismeant that
our TEGs could be readily integrated to familiar gar-
ments at certain points, such as the cuff of a sleeve or
the collar, where the TEG arrays would be naturally
folded over when the user wears the garment. Fold-
ing the TEG around the fabric of the garment exposes
the device to both the TH, body heat, and TC, ambi-
ent air without sacrificing the comfort or function-
ality of the garment. In conjunction with optimizing
the placement of the TEG on the garment, the place-
ment of the device on the body was also considered
in order to maximize the amount of heat transferred

Figure 2. (a) A diagram of our lateral TEG folder over a
spacer fabric such that a thermal gradient is imposed across
the TEG. (b) Thermal camera image of a person.

from the heat source (the body) to the TEGs. Areas
closest to the body’s core, along the head, neck and
torso, have lower temperature variability than those
on the body’s extremities, and thus lead tomore stable
power outputs from the TEGs. Figure 2(b) shows a
thermal image of a person, the bright spots repres-
enting the hottest areas on the body.

For this work, we chose to patch two separate
TEG arrays onto the collar of a fleece, three-quarter
zip jacket, as depicted in figure 3(a). The placement

3
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Figure 3. (a) Design of a three-quarter zip jacket integrated with two separate TEG arrays at the collar. (b) The mechanism of
integrating snap buttons with silver nylon thread.

Figure 4. (a) Power outputs from an eight-leg TEG array located at the base of the collar of a three-quarter zip fleece jacket.
Averaged data from three different arrays created on separate garments are presented as black squares; error bars are colored blue.
The red data point represents the power and voltage output measured while the jacket was worn by a participant. (b) The power
outputs from the three-quarter zip jacket as more TEGs are added to the array at the base of the collar.

on the collar allows for the TEGs to be in thermal
contact with the neck and chest area, which have
low thermal variability. The top of the collar had an
array consisting of six PEDOT-Cl thermoelectric legs,
while the base of the collar had an array of eight
legs. Two separate arrays allowed for thermoelectric
body heat harvesting when the jacket was worn either
with the collar folded down, or with the collar folder
up. The TEGs were connected in series within the
array, each array was designed to quick-connect (via
snap buttons) to its own modular charge storage
device in the future. Silver-plated nylon threads were
used to electronically interface the components and
therefore create a fabric circuit. Commercially avail-
able snap buttons were used as electrical switches,

allowing for a modular charge storage device to be
connected/disconnected from the TEGs on demand
(figure 3(b)).

Figure 4(a) shows the power outputs produced by
the eight-leg TEG array at the base of the collar of the
fleece zip jacket at room temperature, at fixed voltage
values. The data recorded from the six-leg TEG array
at the top of the collar can be found in the Support-
ing Information (figure S2). The power outputs were
recorded at fixed voltage values, where the applied
voltage values covered the apparent range of output
voltages capable of being produced by our TEGswhen
worn on the body (see figure 1(c)). Figure 4(b) shows
the power outputs as the number of TEGs in the
array was increased. The power decreased as more
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legs were added, which is due to an increase of the
overall impedance of the completed circuit, likely due
to contact resistance between each of the PEDOT-Cl
legs and the silver nylon fabric/thread (figure S3). It
is important to note that the number of TEGs in the
array should not exceed the contact area between the
jacket with a wearer’s neck during regular wear, as this
would result in poor thermal contact between the heat
source and some of the TEGs, and, therefore, a reduc-
tion in the overall efficiency of power generation.

The power and voltage output produced at room
temperature by the eight-leg TEG array at the base of
the jacket collar when the fleece zip jacket was worn
loosely by healthy participants (∆T = 15 ◦C) was
also recorded, shown in red in figure 4(a). On-body
measurements were taken on lightly dampened skin
to simulate perspiration. The output voltage of the
device arrayworn on the bodywas also independently
confirmed using a multimeter and measured to be
112mV.Whenworn by a participant at room temper-
ature, a∆T = 15 ◦C, the TEG array generated 2 µW,
which is currently the highest value reported for a
conjugated polymer-based TEG array. This results in
a power density of around 67 µW cm−2 for a two-leg
device calculate using the area of the PEDOT-Cl film
as this is the active material. These voltage and power
output values were not notably affected by the fit and
looseness of the jacket on various participants and
were consistently achieved after each participant wore
the jacket for at least 15 min (to ensure sufficient heat
transfer from the wearer’s body to the TEG array).
Further, due to the low thermal transport property
of the wool felt substrate, which prevented complete
thermal equilibration across each thermoelectric leg,
the TEG array at the base of the jacket collar con-
tinuously output 112 mV even after eight continuous
hours of wear.

4. Conclusion

We utilized reactive vapor deposition to coat com-
mercially available wool felt in PEDOT-Cl, which we
used to construct an all-fabric TEG.Wedemonstrated
that a 2-legged TEG device can generate an average
of 3.5 µW at an operating voltage of 100 mV. These
TEGS were successfully integrated as arrays into the
collar of a three-quarter zip jacket. When worn by a
participant the TEGs were able to generate an unpre-
cedented 2 µW of power at room temperatures. Our
work reveals pertinent design considerations when
integrating thermoelectrics into a garment and also
indicates that practical power outputs can be extrac-
ted from body-worn polymer-based thermoelectric
devices at room temperature. Additionally, this work
emphasizes the importance of testing wearable ther-
moelectrics on a human body to accurately predict
the potential power produced by the garment.
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