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Longitudinal tracking of sleep metrics is important for detecting and managing various diseases, spanning cardiorespiratory
disorders to dementia. However, at present, sleep monitoring primarily occurs in specialized medical facilities that are not
conducive to long-term studies. In-home solutions either compromise user comfort or signal accuracy in tracking sleep variables
and have not yet provided reliable longitudinal data. Here, we survey the current state of sleep trackers and highlight key
shortcomings to provide guiding principles for improved sensor system design. We believe that human-centered design of
multimodal, low-form-factor, comfortable sensing systems is needed for this increasingly-important area of human health
monitoring.
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There is growing commercial, clinical and academic interest in
sleep monitoring because of mounting evidence that links sleep
disruptions and sudden changes in sleep patterns to diminished
cognitive function, diabetes, high blood pressure, heart disease,
obesity, and depression.1–6 There is also growing interest in improving
detection of sleep disorders, which affects 50 to 70 million Americans
of all ages and socioeconomic classes.7 Further, recent work has
shown that sleep monitoring has potential as a marker for Alzheimer’s
disease pathology. Longitudinal changes in cognitive function have
been correlated with consistent changes in selected sleep metrics and
evidence also suggests that sleep disturbance itself can contribute to
cognitive decline and heighten the risk of Alzheimer’s disease by
increasing β-amyloid burden.8–10 Sleep disturbances also often
precede (by up to years) the diagnosis of Alzheimer’s disease and
may even appear before onset of cognitive decline.11 There exists,
therefore, a significant need for comfortable sleep monitoring solu-
tions that can be used regularly (e.g., at least once a week for three-six
months) by non-specialist users to measure sleep metrics at home and
thereby detect changes in sleep behavior and quality.

Traditional sleep monitoring tends to mainly focus on sleep
macrostructure, i.e., classifying sleep stages and quantifying the
amount of time spent in each sleep stage relative to total sleep time
(TST). Sleep stages include: wake; rapid eye movement (REM)
sleep; light sleep (Stage 1, or non-REM N1); intermediate sleep
(Stage 2, or non-REM N2); and deep sleep (Stage 3, slow wave
sleep, or non-REM N3).12 Of particular note is the slow-wave or
deep sleep phase—this phase constitutes the deepest, most re-
freshing and physiologically-restorative sleep type, which tends to
diminish in duration with age.

Table I summarizes the biosignals that are used to classify
sleep stages and gain a holistic understanding of sleep. Electro-
encephalography (EEG), is considered the most important signal for
high-quality sleep monitoring.12 Indeed, each sleep stage is actually
defined based on a characteristic EEG pattern—each sleep stage is
characterized by brain waves of specific frequencies and/or ampli-
tudes. However, since some sleep stages are also associated with
certain types of eye movements and muscle activities, electrooculo-
graphy (EOG) and electromyography (EMG) measurements are
also recorded in tandem to confirm or disambiguate sleep stage

classifications. Cardio-respiratory parameters are particularly useful
for understanding sleep disorders, such as apnea. In addition, gross
body movements during sleep, such as periodic leg movements, are
important when studying somnambulism or monitoring the sleep
behavior of older, cognitively-impaired adults in care facilities.
Thus, in addition to EEG and EOG, measurements of cardiorespira-
tory features, body temperature and muscle activity are also included
in laboratory-based polysomnography (PSG) systems, which are
considered the most clinically accurate method of monitoring sleep.

In addition, microstructural EEG features during sleep are emer-
ging as clinically important tools for diagnosing cognitive disfunctions
and age-related decline. Shorter timescale phasic EEG events, such as
k-complexes, spindles and delta wave bursts,13,14 are not widely used
for standard sleep stage scoring; however, research has shown that
aging-related changes are particularly reflected in fast spindle density,
k-complex density, and delta power during intermediate sleep.15

Further, diminishing time in slow-wave or deep sleep with age has
been shown to increase the concentration of β-amyloids in the brain,10

which heightens the risk of developing dementia. Therefore, as our
understanding of sleep parameters and their correlations to mental and
physical disorders evolves, it is also becoming more and more
important to have access to raw signals from various sleep tracking
systems to provide a richer data set on which accurate clinical
diagnoses and early interventions can be based.

Current Status

Contemporary work on sleep trackers can be classified into four
categories based on the form factor of the device: (1) non-wearable
sleep trackers, which includes mattress- or bedding-embedded
systems and room-integrated systems, (2) wrist-worn sleep trackers,
(3) head-worn sleep trackers, and (4) garment or fabric-integrated
sleep trackers. Table II summarizes the biosignals recorded by these
categories of in-home sleep monitoring systems and compares them
to the clinical gold-standard, the laboratory-based polysomnography
(PSG) system.

Non-wearable sleep trackers.—There are a number of efforts
that propose to instrument the environment around the user, for
example inside a mattress or bedding, or in the room containing the
mattress. Accelerometers and/or piezoelectric units, and thermistors
have been embedded into mattresses and bedding to measure
heartbeats, heart rate, respiration, gross body movements and bodyzE-mail: tandrew@umass.edu
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Table I. Representative biosignals used to classify sleep stages. A check mark denotes that strong, high intensity biosignals are generated, whereas a cross mark means that little to no signal can be
observed.

Sleep Stage Brain Activity (EEG)
Eye Movement
(EOG)

Gross Body Movements
(EMG) Heart Rate Respiration

Wake ✓ (Irregular) ✓ (Irregular) ✓ (Irregular) Irregular Irregular

Rapid Eye Movement (REM) ✓ (Beta, 12–32 Hz) ✓ (fast rapid move-
ments)

✗ (paralysis) Fast, Irregular Fast, Irregular

Light Sleep (Stage 1, non-Rem N1) ✓ (Theta, 4–8 Hz) ✓ (slow cyclic eye
rolling)

✓ (Occasional Twitches) Slow, Regular Slow, Regular

Intermediate Sleep (Stage 2, non-REM N2) ✓ (Theta, 4–8 Hz, spindles and
k-complexes)

✗ (minimal) ✗ (minimal) Slow, Regular Slow, Regular

Deep Sleep or Slow-Wave Sleep (Stage 2,
non-REM N3)

✓ (Delta, 0.5–4 Hz) ✗ (minimal) ✗ (minimal) Lowest, Regular Lowest, Regular
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Table II. Summary of biosignals recorded by currently-known sleep monitoring systems. A combined check/cross mark indicates that only selected models record a certain biosignal.

Brain
Activity

Eye
Movement

Gross Body
Movements

Body
Temperature

Blood Oxygen
Level

Heart Rate/Blood Pulse
Wave

Clinical-Grade Polysomnograph ✓ ✓ ✓ ✓ ✓ ✓
Mattress- or Bedding-Embedded

Trackers
✗ ✗ ✓ ✗✓ ✗ ✓

Room-Integrated Trackers ✗ ✗ ✓ ✗ ✗✓ ✓
Wrist- or Finger-Worn Trackers ✗ ✗ ✓ ✗✓ ✗✓ ✓
Head-Worn Trackers ✓ ✓ ✗ ✗✓ ✗✓ ✓
Garment- or Fabric-Integrated Trackers ✗✓ ✗✓ ✓ ✗ ✓
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temperature (e.g., Murata, Beddit). There are also examples of
installing cameras or radar systems in the room containing the
mattress to find selected physiological variables (respiration, heart
rate and/or blood oxygen level) and track head posture and body
movement during sleep.16,17

While all these non-contact sleep tracking solutions have the
advantage of being unobtrusive and, therefore, useful for longterm
studies, they tend to be imprecise and noisy. The imprecision stems
from the inability to observe the most valuable signal for sleep
monitoring—EEG—and relying on chest movements during respira-
tion and gross body movements to infer sleep markers.18 Further, the
signals from all of these non-contact sensing systems are confounded
by proximate activity by bed partners or caregivers and other moving
objects in the vicinity, like a fan.19

Wrist- and finger-worn sleep trackers.—Wrist- or finger-worn
devices are, at present, the most pervasive and commercially-
accessible devices for in-home sleep tracking. All of these devices
use hard electronic components, such as light-emitting (laser)
diodes, cameras/photodetectors and inertial measurement units
(IMUs), to measure blood pulse waves and body movement from
the wrist or fingers (e.g. Fitbit, Garmin, Actiwatch, Whoop, and
Oura Ring). Certain models also contain dry, metal electrodes to
measure cardiac parameters and/or skin temperature, and others
quantify blood oxygenation levels.

Due to intense, broad-reaching commercialization efforts, these
wrist- and finger-worn devices are the most aesthetically-advanced
sleep tracking solutions, with imperceptibly integrated electronics
and wireless communication components. Through a combination of
hardware engineering and clever data sampling/transmission strate-
gies, these devices have, to date, been designed to function for at
least eight hours before requiring a battery recharge. The main
disadvantage of these solutions is the inability to directly monitor
EEG and EOG signals, which are the only signals that allow accurate
sleep stage classification (EEG), meaningful sleep quality analysis
(EEG+EOG) and clinical diagnosis of cognitive decline and mental
disorders (EEG). At present, all wrist- and finger-worn sleep trackers
simply infer sleep stage based solely on cardiac, respiratory and
gross body movement information, which results in poor accuracy
and precision in sleep scoring.

Several studies have been conducted to validate these wrist- and
finger-worn sleep trackers in comparison to the gold-standard,
laboratory-based PSG systems.20–23 On average, across multiple
models of these actigraphy-based trackers, sleep stages could only
be identified/classified with approximately 60% accuracy for a large
population of healthy adults.24 No validation dataset is available, to
the best of our knowledge, for older populations and those at risk for
cognitive decline.

Head-worn sleep trackers.—Head-worn solutions hold more
promise for meaningful sleep tracking as they allow recording of
sleep-relevant biopotential signals from the head (EEG and EOG), as
compared to wrist- or finger-worn devices that cannot reveal the
same information. The Phillips Smartsleep headband uses adhesive-
backed disposable electrodes placed behind the ear to obtain EEG
signals during sleep. Despite the high signal quality of these
electrodes, they are uncomfortable due to the adhesive and are not
practical for long-term wear, since, once the gel dehydrates, the
electrode loses its functionality and needs to be replaced. Further,
these electrodes and the headband itself cannot be sanitized or
laundered, which creates a hurdle for consistent longterm use.

Dry electrodes are comparatively more prevalent in head-worn
sleep trackers. Commercially available headbands such as Muse,
Dreem, Brainbit, Neuroon, and SleepProfiler, use dry metal
electrodes to obtain EEG from the forehead. Some devices also
have an optical photoplethysmography (PPG) sensor for cardiac
and respiration rate tracking and/or extra dry electrodes for EOG.
In-ear sensors to record EEG have also gained interest,25,26 as well

as a temporary-tattoo dry electrode placed on the head27 for
capturing EEG, EOG, and EMG during sleep.

The main drawbacks of most head-worn systems are the rigid
scaffolding of the device and the use of either hard or adhesive-
based sensing components that touch the skin on sensation-rich
areas. These features can make the system highly uncomfortable in
different sleep postures and are not ideal for continuous long-term
sleep tracking. For devices placed on the head, weight, feel and form
factor play an outsized role in use frequency and perceptions of
comfort, especially for older adults. Further, users with sensitive or
compromised skin are loathe to use adhesive- or tattoo-based devices
during sleep. Another debatable aspect of the current head-worn
solutions is the quality of the acquired biopotential signals—the
majority of these technologies use dry electrodes to avoid adhesives
and enable sanitization protocols, however, this results in a
considerable increase in motion artifacts.28

Garment- or fabric-integrated sleep trackers.—Physiological,
biopotential and physical sensing through fabric-based elements has
gained interest during the past decades, particularly in the academic
research realm. Many of these devices are based on conductive
fabric- or fiber-based dry electrodes sewn or knitted/woven into
tight-fitting clothing to measure various physiological parameters,29

including cardiac, respiration, and activity information. There have
also been some studies on the design of textile-based dry electrodes
that can be integrated into rigid head-worn devices to extract certain
biopotential signals, similar to the commercial head-worn devices
described earlier.30

The basic problem with many fabric-based prototypes is that dry
electrodes are inherently susceptible to noise and, when incorporated
into garments, fabric-based dry electrodes are further subject to
motion artifacts and static-field couplings to the body, which,
together, severely compromise the signal-to-noise ratio (SNR) and
reliability of these prototypes. Further, fabric- and garment-inte-
grated sensing systems shoulder the added burden of needing to be
mechanically-rugged, launderable/wash-stable and recoverable—
features that many research reports do not thoroughly and reliably
evaluate prior to publication.

Nonetheless, selected research groups are currently endeavoring
to produce launderable, comfortable garments containing a distrib-
uted network of fabric-based sensors that reveal key metrics relevant
to sleep. Most notable among these efforts are: (1) a loose-fitting
pajama shirt31 that uses fabric-based piezoionic pressure sensors32 to
extract cardiac and respiration features, in addition to sleep posture,
during sleep, (2) a foam/fabric eye mask outfitted with recoverable
and launderable wet-hydrogel electrodes for EOG,33 and (3) a soft/
adjustable fabric head wrap that captures clinically-accurate EEG, in
addition to physiological and physical signals (cardiac, respiration,
general body movement, and head posture), through fabric-based
sensors on the head.34 Although these highlighted examples are lab
prototypes that require broader independent validation, they boast a
combination of heretofore unmatched features (launderability, com-
fort, signal accuracy) that hold great promise for consistent, long-
itudinal in-home sleep tracking by non-specialist users.

Future Needs and Prospects

Our understanding of sleep and its effects on human health are
constantly evolving, as is the clinical understanding of relevant sleep
markers for diagnosing various pathologies. What is clear, however,
is that in-home monitoring of sleep behavior and sleep quality over
long periods of time allows users with diverse backgrounds and pre-
existing conditions to better manage their own health and aging, and
pursue early interventions as needed.

However, achieving high-quality in-home sleep monitoring is
complicated by the number of sensor modalities and locations that
need to be simultaneously sampled to provide an accurate and
holistic picture of sleep. Diverse sensors and discrete electronic
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components need to be placed on the head, as well as several other
locations on the body to provide a complete suite of measures that
accurately reveal sleep macro- and microstructure.

While commercially-available wrist- or finger-worn “sleep trackers”
are comfortable, they sacrifice fidelity and precision. At present, in-
home sleep sensing devices actually rely on surrogate measures of
sleep, such as heart rate, breathing, and body movement signals, rather
than EEG, which is the only measurable determinant of sleep stages.
Since the surrogate signals only capture a coarse temporal structure of
sleep, they provide only coarse-level sleep metrics, like total sleep time
and percent REM sleep, and, in some cases, macro-structural analysis
of sleep such as sleep stages. In addition, metrics provided by these
devices are only accurate for “normal” healthy adults and not
individuals with sleep disorders or other cognitive maladies. This is
because these devices need to compensate for the imprecision of
surrogate measures by relying on large population-level data analysis
but these measures are erroneous for individuals whose sleep patterns
do not follow population averages. For example, the REM sleep stage is
known as a state where a person experiences random/rapid movement
of the eyes, accompanied by low muscle tone throughout the body, and
the tendency to dream vividly. However, a person who is suffering
from a sleep disorder or dementia usually has violent arm and leg
movements during the REM sleep stage. Sleep monitors that use
surrogate measures of sleep assume that the body normally freezes and
does not move during REM since they solely measure the cardio-
respiratory features and gross body movement—this means that such
sleep monitors will erroneously classify the REM sleep stage in a
person suffering from sleep disorders or dementia as a “wake” stage, or
possibly a “light sleep N1” stage, thus providing a misleading picture of
sleep quality. As a result, these sleep trackers are inaccurate for
individuals with substantial clinical needs and medication-induced sleep
disruptions. Similarly, for the same reasons, sleep monitors that use
surrogate measures of sleep also often erroneously classify a “wake”
period as a REM sleep or deep sleep N2 stage in healthy adults,
particularly if a user remains very still for long periods of time, for
example, while reading. They also fail to capture day/night (circadian)
rhythm sleep patterns of individuals with sleep abnormalities (such as
older adults with dementia).

Other sleep trackers focus on accuracy and, therefore, perform
EEG but sacrifice some modicum of comfort, adaptability or user-
friendliness in the process. Most of the head-worn sleep trackers that
have advanced to validation studies and/or the commercial market
require rigid sensing elements that are pressed tight against the head
or held directly on the skin. For example, the Phillips Smart Sleep
headband uses behind-the-ear sticker electrodes, the Muse and
SleepProfiler have an optical sensor on the forehead and EEG
electrodes inside a rigid box/frame, and the Dreem has bone
conduction electrodes that need to be held tightly against the user’s
head. Such rigid scaffolds and the embedded hard components make
these devices uncomfortable to wear during sleep and, therefore,
these sleep trackers are not consistently used over long periods of
time to track meaningful changes in sleep behavior and sleep quality.

Another important limitation of head-worn trackers is that,
despite performing EEG, most devices do not currently have
adequate SNR to expose microstructures of sleep, such as spindles
and k-complexes, with the singular exception of the SleepProfiler.
This is a missed opportunity since these sleep microstructures play
an essential role in information processing and long-term memory
consolidation, and are biomarkers of both Alzheimer’s disease
pathology and seizures. As compared to the gold-standard laboratory
PSG systems, most head-worn trackers suffer from poor SNR in
their EEG signals, because the dry electrodes used in these trackers
are inherently noisy to start and are subsequently further confounded
by motion artifacts, dirty skin conditions and/or the presence of hair
on the skin, and suboptimal electrode placement when the device is
not placed on the head correctly (or does not fit perfectly on a user’s
head). Fabric-based sleep trackers containing wet hydrogel elec-
trodes deftly overcome these SNR issues while also being

comfortable to wear, though these devices still need to be transi-
tioned from the lab to the commercial market.

As our understanding of sleep parameters and their correlations
to mental and physical disorders evolves, it is also becoming more
and more important to have access to raw signals from various sleep
tracking systems to provide a richer data set on which accurate
clinical diagnoses and early interventions can be based. However,
data analytics cannot be performed using many commercial sleep
tracking solutions due to proprietary issues or lack of availability of
raw sensor data, which makes ground-truthing and independent
validation challenging or impossible. Therefore, ideally, all in-home
sleep monitoring solutions should be graded against a set of robust
and standardized validation parameters to ensure, at minimum,
proper sleep scoring in diverse populations with various pre-existing
conditions and medication regimens.

Summary

Gaining a holistic understanding of sleep metrics is increasingly
important for human health management. However, sleep is a
challenging context in which to perform reliable, longitudinal
sensing because of the diverse suite of biosignals that need to be
extracted from different locations on the body while honoring the
user’s heightened need for comfort during sleep. Further, for early
diagnosis of certain pathologies, consistent and clinically-accurate
measurement of brain activity (EEG) is necessary, as opposed to
stochastic and disjointed monitoring of surrogate measures (such as
cardiorespiratory features and gross body movements).

Despite living through an exciting, golden age of sensors,35

robust solutions for reliably tracking sleep measures in-home remain
elusive. Innovative, human-centered design of multimodal, low-
form-factor, comfortable, reusable sensing systems for sleep mon-
itoring needs to be pursued, along with robust independent valida-
tion of any lab prototypes across diverse populations. Ample room
exists for improved materials and electrode engineering to access
comfortable skin-contact based biopotential electrodes that are
recoverable, resist fouling during long-term use and produce high
SNRs. Creative methods for integrating and/or embedding sensors
into garments and accessories will greatly ameliorate user adoption
and increase consistent use. Lastly, earnest ground-truthing efforts
and real-world validation with diverse (in age, gender, pre-existing
conditions and risk states) populations are integral for identifying
strong sensing solutions for sleep monitoring.
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